Appendix A

Quick Review of Probability
and Statistics

A.1 Randomness

Randomness plays an essential role in the theory of information—both classical
and quantum. It is therefore useful for us to review basic concepts from
probability and statistics.

What is randomness anyway? In the classical world randomness is re-
lated to ignorance. We lack knowledge of all the conditions and parameters
needed to make accurate predictions. For example, flipping a coin and see-
ing if it lands face up or face down is considered random. But it isn’t really
random. If Bob watches Alice flip a coin and were able measure exactly how
rapidly she made it spin and measure its initial upward velocity, he could
predict (using Newton’s laws of classical dynamics) how long it will be in
the air and whether it will land face up or face down. In more complicated
dynamical systems with several interacting degrees of freedom, the motion
can be chaotic. Tiny changes in initial conditions (positions and velocities)
can lead to large changes in the subsequent trajectory. Thus even though
classical mechanics is completely deterministic, motion on long time scales
can appear to be random.

Many computer programs rely on so-called random number generators.
They are not actually random but rather chaotic iterative maps—they take
an initial seed number and compute some complicated function of that seed
to produce a new number. That number is then used as the input to the next
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round of iteration. The results may look random and may even pass many
statistical tests for randomness, but if an observer knows the program that
was used and the starting seed, he or she can predict the entire sequence of
numbers perfectly.

In quantum mechanics randomness is an ineluctable feature. It is not due
to ignorance of initial conditions but rather is an essential part of the theory.
Alice can prepare N truly identical copies of a quantum state and Bob can
make a measurement of some physical property on each copy of that state
and obtain truly random (not pseudo-random) results. The results are not
random because of some ‘hidden variable’ whose value Alice forgot to fix or
Bob failed to measure. They are truly random-it is impossible to predict the
outcome of the measurement before it is performed.

A.2 Probabilities

The probability p; of an event j is a non-negative number obeying 0 < p; < 1.
The probabilities of all possible events (in a universe of M possible events)
obeys the sum rule

ij =1. (A.1)

This simply means that one of the possible events (from the complete set of
all possible mutually exclusive events) definitely happened.

As an example, suppose we have an M-sided die (die is the singular form
of dice). On each face of the die is a number. Let z; denote the number of
the jth face of the die, and p; be the probability that the jth face lands face
up so that the number z; is showing when the die is randomly tossed onto a
table. We can define a so-called ‘random variable’ X to be the number that
comes up when we toss the die. X randomly takes on one of the allowed
values x;;7 = 1,..., M. We can now ask simple questions like, what is the
mean (i.e. average) value of X? This is also known as the expectation value
of X and is often denoted by an overbar or by double brackets

X = (X)) = ijxj- (A.2)



APPENDIX A. QUICK REVIEW OF PROBABILITY AND STATISTICS197

This sum over all possible results weighted by their frequency of occurrence
gives the value one would obtain by averaging the results of a huge number
of trials of the experiment (of rolling the die).

As an example, suppose we have a standard cube-shaped die with the six
faces numbered 1 through 6, that is z; = j. We will take the ‘measurement
result” to be the number on the top face of the die after it stops rolling. If
the die is fair, the probability of result z; is p; = é, and thus the mean value
will be

X = ZG:pjxj = 26: (é) j=3.5. (A.3)

Exercise A.1l. Consider a pair of standard six-sided die with faces
numbered consecutively from 1 to 6. Assuming the dice are fair

a) What are the unique possible values for the sum of the two num-
bers showing on the top faces of the dice?

b) What is the probability that each of these unique possible values
occurs?

For later purposes, it will also be useful to consider what happens when
we have two independent rolls of the die. Let the random variable X; be
the number that comes up on the first toss and let X5 be the number that
comes up on the second toss. What is the joint probability distribution for
the two results? That is, what is the probability P(z;,x)) that X; = z;
and Xy = 7,7 Because each result is drawn independently from the same
probability distribution we simply have that the probability for a given result
of two tosses is just the product of the probabilities of the individual results

P(xj, xk) = Djpk- (A.4)

This is simply the statement that the joint probability distribution factorizes
into two separate distributions for the individual events (assuming the events
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are independent of each other). From this it follows that

(X1 X2)) = Zzp(wj,xk)xjxk
= ZZPjpk%fEk
= Zpgl‘j} {Zpkxk}
= (X)) (X)) = X, (A.5)

We conclude that for independent (i.e. uncorrelated) random variables, the
mean of the product is equal to the product of the means.

The random variables X7, X5 will not be independent if they correspond
to the result from the same throw of the die. Then of course Xo = X; = X
and we have a different result

(0% = ij C (A.6)

This is simply the mean of the square of the number that comes up when we
toss the die. Does the mean of the square bear any relation to the square
of the mean, X2? To find out, let us consider the so-called variance of the
distribution, the mean of the square of the deviation of the random variable
from its own mean

=X - X)) = Yop (- X)

= > pi{(x))* —2Xu; + X}

= (X)) = (X))~ (A7)

In deriving this result we have used the fact that

M M
ijX2:X22pj:X2, (A8)
j=1 j=1
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and

M M
j=1 j=1

Clearly the variance is non-negative o > 0 because (X — X)? can never
be negative. Hence we conclude

(X)) > (X)) (A.10)

The variance is a measure of the width of the probability distribution.
Another related quantity is the standard deviation or ‘root mean square
deviation’ of the random variable from its mean

o= (X - X)*)e. (A.11)

To understand better what we mean by the width of the distribution consider
the following examples. If a six-sided die has the number 3 painted on every
face the probability distribution has zero variance. The only number that
ever comes up is 3 so the mean of the distribution is 3 and no result ever
deviates from the mean. Similarly, if the die has the standard consecutive
numbering of the faces from 1 to 6, then a wide variety of outcomes is possible.
If the die is fair then all outcomes are equally likely and the probability
distribution is wide as shown in the left panel of Fig. Suppose however
that the die is unfair and yields the number 3 with probability p; = 0.8, and
the other numbers with probability p; = ps = ps = p5s = ps = 0.04. This
distribution is plotted in the right panel of Fig. [A.1] The distribution has
wide support (i.e. is non-zero over the full range from 1 to 6) but is still
sharply peaked at 3. Hence the variance is small but not zero.

Exercise A.2. A standard six-sided die has faces numbered consec-
utively from 1 to 6. Find the variance and standard deviation of the
probability distribution associated with random throws of the die

a) Assuming the die is fair (as in the left panel of Fig.|A.1).

b) Assuming the die is biased with the probabilities given in the right
panel of Fig.
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Figure A.1: Left panel: Graph of the probability distribution for the outcome of the throw
of a fair die (p; = 1/6;j = 1,...,6). The variance is large. Right panel: Graph of the
probability distribution of an unfair (highly biased) die having p3 = 0.8, and p; = ps =
P4 = ps = pg = 0.04. The variance is smaller.

A.3 Statistical Estimators

When performing experiments one may wish to attempt to measure the av-
erage value of some statistical quantity. Since we can execute only a finite
number of runs of the experiment, we cannot be guaranteed to obtain the
exact value of the mean, only an estimate.

For N trials we can form a so-called ‘estimator’ X for X, the mean value
of a random variable via

X(N) = %ZXk: (A.12)

where X} is the number that came up in the kth run of the experiment (e.g.
throw of the die). We use the tilde over the X to indicate that this is an
estimator for the mean, not the true mean.

For finite IV, this estimator is not likely to be exact, but for large N we
expect it to become better and better. Is there a way to determine how
accurate this estimator is likely to be? Indeed there is. Let us write

X(N)=X + 0y, (A.13)

where the error dy is given by

1 i
oy =+ ; (X, — X] (A.14)
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If we were to ensemble average this estimator over a huge (formally infinite)
number of experiments consisting of N throws we would obtain

(0w = 3 3 [(4Xe)) — X] =0. (A15)

k=1

Thus the average error vanishes. That is, our estimator is unbiased as ex-
pected.

We can get a sense of the typical size of the error by considering its
variance:
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where 0, = o, the standard error for a single throw of the die defined in
Eq. (A.11). Thus our estimator has a random error whose variance decreases
inversely with N. The standard error thus is

1
oN = ——07. A17
V=R (A.17)

This is a simple estimate of the size of the error that our estimator of the
mean is likely to have.
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Box A.1. Sample variance vs. true variance Care must be exercised
when estimating the variance o7 of an unknown probability distribution from
a finite sample size drawn from the distribution. If (somehow) we know the
true mean of the distribution, then we can simply use as our estimator of the
variance

~2 1 i v\ 2
G _N;o(j—)(). (A.18)

It is straightforward to show that this is an unbiased estimator since
((6%)) = ot. (A.19)

The situation is not so simple when we do not know the mean of the un-
known distribution and are forced to estimate it using Eq. . While
this estimator of the mean is unbiased it still will have some small error and
that error is positively correlated with the values of X; in our sample. This
means that if we use as our estimator of the variance

~2 1 Y % 2
5 = N;(Xj — X(N))?, (A.20)

it will be biased because it is too small. As an extreme example, consider
the case N = 1. Our estimate of the mean is X(N) = X;. If we substitute
this for the mean in Eq. (A.20) we always obtain 62 = (X; — X;)2 =0. A
straightforward calculation shows that for general N
. N-1

(52)) =~ (A21)
which is consistent with our result that it vanishes for N = 1. Therefore if
we want to have an unbiased estimate of the variance we should use

f= = (X~ R (A.22)

J=1

o

We will refer to this as the unbiased sample variance.




APPENDIX A. QUICK REVIEW OF PROBABILITY AND STATISTICS203

Let us return now to the question of estimating the mean of a distri-
bution from N samples. We have an unbiased estimator and have already
computed the variance of our estimator in Eq. . The question arises as
to whether or not we could say something about the probability distribution
of the error. For large N, the error dy in Eq. is the sum of a large
number of small random terms. By the central limit theorem, the error will
be, to a good approximation, Gaussian distributed. That is, the probability
distribution for the error is well approximated by a continuous distribution
having probability density

1 — 5.7 0%
P(dy) = ——¢ 3N (A.23)

\/ 27Ta]2\,

The interpretation of probability density for a continuous variable z is the
following. P(x)dz is the probability that the value of the random variable
X lies between z and x + dzr. The normalization condition on probability
becomes an integral (see the discussion on Gaussian integrals in Box

+o00
/ dx P(z) = 1. (A.24)

Summations over random variables such as in Eq. (A.14) can be inter-
preted as random walks. Suppose that A is a random variable with equal
probability of being +¢, where € is a fixed step length. Then a random walk
of N steps ends up a position

N
=Y A (A.25)
j=1

where A; is the value of the random variable A for the jth step.

In Fig. we see plots of the probability distribution for x for different
values of IV, together with the Gaussian approximation to it. We see that the
Gaussian approximation is quite good even for modest values of N. This is
the essence of the central limit theorem. The sum of a large number of ran-
dom variables (with bounded variance) is well-approximated by a Gaussian
distribution.

Exercise provides an opportunity to prove the central limit theorem
for the particular case of a random walk. To see how this works, let us
derive the ezxact probability distribution for a random walk of N steps, each
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of size e = 1/2. We take N even so that the final position m of the walker is
always an integer and lies in the interval m € [-N/2,+N/2]. Let py be the
probability of stepping to the right or left respectively. Let the number of
steps to the right be R and the number to the left be L. We have N = R+ L
and the final position is given by m = (R— L)e. The probability of any given
sequence of steps is

P = pfpf. (A.26)

The number of different walks with R steps to the right and L steps to the
left can be determined from combinatorics. Think of a string of N symbols,
¢ and r denoting the direction of each step in the random walk. There
are altogether N! permutations of the order of these symbols. However L!
permutations merely swap ¢’s with other /’s and so should not be counted
as distinct walks. Similarly there are R! permutations of the r’s that should
not be counted. The number of distinct walks M (R, L) is therefore

N!
RILY
The probability of ending up at m = (R — L)e after N = R+ L (even) steps
is therefore

N! _ N
P(N,m) ZPEPE—R!L! = plip™ ( R ) (A.28)

M(R,L) = (A.27)

where the last expression is the binomial coefficient

( ]}\zf ) - R!(NLiR)!- (A.29)

For this reason, this probability distribution is known as the binomial distri-
bution. Notice that this expression is correctly normalized because

+N

>0 PUNam) = Do e = i)Y = ()Y = 1, (A30)

where we have used the binomial theorem to evaluate the sum.
If the final position is m = (R— L)e, we have (for e = 1/2) R = (N+m)/2
and L = (N —m)/2 so Eq. (A.28) can also be written

N+m)/2 N—m)/2 N!
PN m) = e e e TV =y el (A-31)
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Exercise A.3. A random walker moving in one dimension takes steps
of length ¢ = 1/2 to the right (z — 2z + ¢) with probability p and to
the left (r — = — €) with probability ¢ = 1 — p. The walker starts at
x = 0 and the position after IV steps is simply the algebraic sum of all
the steps. The final position lies in the interval [—-Ne, +Ne|. If e = 1/2
and N is even, only integer positions are possible.

a) Derive exact expressions for the mean and variance of the position
m after N steps by two different methods. Hint: You can either
derive the appropriate properties of the binomial distribution, or
you can use the fact that the individual walk steps have a mean
and variance and are statistically independent. For the former it
is useful to notice that p+%(p+)R = R(p;)E.

b) Discuss and explain what happens to the variance as p approaches
either 0 or 1.

c) Take the logarithm of P(NN,m) in Eq. (A.31) and use Stirling’s
(asymptotic*) expansion

1
ImZ\'~ZInZ -7+ 5 In(272) (A.32)

for the factorials in the binomial coefficients to show that for large
N the binomial distribution with ¢ = p = 1/2 approaches the
Gaussian distribution

1 _ 1,2
PN(x):\/We 202% (A.33)

where the standard deviation is ¢ = vVNe = /N /2. Hint: In
evaluating the logarithm of the probability, keep terms of order
22 /N but neglect higher-order terms in 1/N such as (z/N)2.

This constitutes a proof of the central limit theorem for this special case.

*Note that an asymptotic expansion does not mean that the difference
between the LHS and RHS of Eq. (A.32) becomes arbitrarily close to zero
for large N. It means that the ratio of the RHS to the LHS approaches
unity for large N. Since both quantities are diverging, their difference
can still be large even if their ratio approaches unity.
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Box A.2. Gaussian Integrals A general Gaussian integral over a single
variable has the form

+00
I:/ dz e~ 42, (A.34)

It turns out that integrals of this form (and its multi-dimensional general-
ization) are ubiquitous in physics, so it is handy to know how to carry them
out. We begin by ‘completing the square’ by writing

+oo % 2
I :/ dz e olF~zal iz, (A.35)

o0

Shifting the dummy variable of integration to z = z — % we have

b2 too 2
= e%/ dr e ** . (A.36)

o0

It turns out to be easier to consider the square of the integral which we can
write as

272 [T 2,2
7 = [eﬁ} / dxdy e~ v, (A.37)

(e 9]

This two-dimensional integral is readily carried out using polar coordinates

r,0 with r = \/m
212 [ 2
I? = [eﬂ} / 2rrdre” . (A.38)
0
Defining u = ar? and using du = 2ardr we have
2 ™ b2 2 > —u
I’ =— [6411] due (A.39)
0

which yields the final result

T b2
I = — @ 4a A4
\/;e (A.40)

From this we see that the Gaussian probability distribution in Eq. (A.23) is
properly normalized to unity.
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Figure A.2: Dots: Probability distribution for the ending position of random walks of N
with step length € = 1/2. The smooth curve is the Gaussian distribution with standard
deviation v N /2. The Gaussian approximation rapidly becomes very accurate as N in-
creases.

A.4 Joint Probability Distributions

This section provides background for the discussion of multi-qubit measure-
ments in Sec. 4.2

Suppose that we have a probability distribution P(A, B) for two random
variables, A and B. A and B might for example be the measured values
of the Pauli Z operator for each two qubits in a quantum computer. Thus
for example P(+1,—1) is the probability that the measured value of Z for
qo is —1 and the measured value of Z for ¢; is +1. Altogether there are
four possible measurement results for the combined measurement of the two
qubits and P obeys the usual sum rule

> > PAB) =1 (A.41)

A=41 B=+1

The probability distribution for measurement results on ¢; is simply

Pi(A)= Y P(AB). (A.42)

B=+1
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That is, it is the sum of the probabilities of all the independent ways that qq
can be found with measured value A independent of what B is. Notice that
it follows immediately from the definition in Eq. and the sum rule in
Eq. that this distribution is properly normalized

Y P(A)=) ) PAB)=L1 (A.43)
A=+1 A=+1 B=%+1

Similarly, the probability distribution for measurement results on qq is

Py(B)= > P(A,B), (A.44)

and this too is properly normalized.

A.4.1 Conditional Probabilities and Bayes Rule

Another useful quantity is the conditional probability distribution of A given
a fixed value of B which is denoted P(A|B). You might naively think that
this is simply given by

P(A|B) = P(A, B), (A.45)

with B held fixed. This however is not properly normalized. The correctly
normalized expression is

P(A, B)
P(A|B) S P(AB) (A.46)
_ P(A,B)
= BB (A.47)
From this it follows that
P(A, B) = P(A|B)Py(B). (A.48)

Similarly, the probability distribution of B given a fixed value of A is

P(B|A) ZBP fl’?ﬁi, 5 (A.49)
_ P45 (A.50)

Pi(A)
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From this it follows that
P(A,B) = P(BJA)P(A). (A.51)

Equating the above two expressions for P(A, B) yields the very important
Bayes rule:
Py (B
P(4)

~—

P(B|A) = P(A|B)

(A.52)

This is especially powerful in situations (which occur frequently) in which
P(BJA) is hard to compute but P(A|B) is easy to compute.

To understand Bayes rule better, let us consider the example discussed
in Box in which we given the problem of quantifying the information
gain from making a measurement. To recap the setup of the problem: Alice
randomly gives Bob one copy of one of the following four states

[¢0) = 10) (A.53)
1) = (1) (A.54)
[¥2) = |+) (A.55)
[¥s) = |=) (A.56)

selected with equal probability. Here of course the Shannon entropy of the
distribution prior to the measurement is Sy, = 2 bits. Suppose Bob mea-
sures Alice’s selected qubit in the Z basis and obtains the result z = +1.
With this new knowledge he must update the probability distribution from
the one prior to the measurement to the new one conditioned on the mea-
surement result. The Born rule tells us immediately what the probability is
for the measurement result being the observed z = +1 conditioned on the
state being |1;)

P(z = +1¢o) 1 (A.57)
Plz=+1l¢1) = 0 (A.58)
P(z = +1[tn) — % (A.59)
Pz =+1[¢h) = % (A.60)

What we are after however is the reverse, namely the probability that the
observed result z = +1 was obtained from state v¢;, P(v;]z = +1). This is
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precisely the situation where Bayes Rule is useful. We have from Eq. (A.52)

Py (1)

P(jlz =+1) =Pz = +1|1/1j)m,

(A.61)
where Py (1);) is the prior probability that Alice selects state ;. In this
case, since Alice chooses each state with equal probability, we have Py(v);) =

1 for all four values of j. P.(2) is the prior probability of obtaining the
measurement result z. In this case, we find using Eqgs. (A.57HA.60))

P(z=+1)= i:P(z = +1[0) Pu(¥y) = [1 O+ % + %} (211) N %

(A.62)

=0

We see that P,(z = +1) on the RHS of Eq. is just a constant factor
needed to fix the normalization of the posterior probability distribution on
the LHS.

Combining all these results with Eq. yields the results given in
Box [4.6]

P(olz = +1) = % (A.63)
Pz =+1) = 0 (A.64)
Phs]z = +1) = i (A.65)
P(yslz = +1) = i (A.66)

(A.67)

As noted in Box [4.6] this probability distribution has Shannon entropy of
(3/2) bits. Thus the information gain Bob receives from his measurement is

3 1
I = Sprior - Spost = <2 - 5) bits = 5 bit.



